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Abstract

At temperatures less than a few MeV , the efficiency of the neutrino-pair

bremsstrahlung from nucleons interracting with the condensed pion field is

much less than previously estimated by other authors. The physical reason

for this is a periodic structure of the developed pion condensate. The repeated

interactions of a nucleon with the periodic pion field modify the nucleon spec-

trum, which is split into two bands. The energy gap between the bands is

about a few MeV or larger, even if the amplitude of the pion field is small

compared with the pion mass.
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I. INTRODUCTION

The theory of the neutrino-pair radiation from nucleons in the π0- condensed nucleon

matter of neutron stars was developed in [1] under the basic simplification that the amplitude

of the pion field is small with respect to the pion mass, |ϕ|2 ≪ m2
π, so that the nucleon-pion

interaction may be considered as a perturbation, and the matrix element of the reaction is

given by the following diagrams,

ν

ν
π0

n n

ν

ν

n n

π0

where the wavy line represents the external field of the pion condensate, and the initial

and final nucleon states are the plane waves. The conclusion has been made that the

corresponding neutrino energy losses depend on temperature as T 6.

What we demonstrate in this letter is that the above result is valid only in the more

strong limit, |ϕ|2 ≪ T 2, which is never fulfilled in the case of developed condensate field.

In the more realistic case, |ϕ|2 ≫ T 2, the process is suppressed exponentially. The physical

reason for this is a periodic structure of the developed pion condensate. The repeated

interactions of a nucleon with the periodic pion field modify the nucleon spectrum, which is

split into two bands, and the energy gap between the bands is about a few MeV or larger,

even if the amplitude of the pion field is small compared with the pion mass. Consequently,

at temperatures less than a few MeV , at which the above reactions has been thought to

be important, the efficiency of the process is much less than previously estimated. The

analogous mechanism of suppression of the neutrino-pair radiation was considered for the

electron bremsstrahlung in the crystalline crust of the neutron star [2], and for neutrino

emission from the bubble phase of the stellar nuclear matter [3].

In the following we use the system of units h̄ = c = 1.
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II. NUCLEON STATES IN THE PION FIELD

By assuming a pseudovector nucleon interaction with the pion field ϕ =(ϕ1, ϕ2, ϕ3) the

effective nucleon Hamiltonian can be written as

Hnr = − 1

2M∗
∇2+

f

mπ
(σ∇) (ϕτ) (1)

where the spin, σi, and isospin, τi, operators are given by the Pauli matrices; M∗ is the

effective nucleon mass; and f = 0.988 is the pion-nucleon coupling constant.

To examine the nucleon spectrum in the presence of the π0 condensate, let us consider a

simple model with the condensed classical pion field ϕ = (0, 0, ϕ0) of the form of a standing

wave [4]

ϕ0 (r) =

√

2

3
a (sin kx+ sin ky + sin kz) (2)

with a real amplitude a, so that a2 = 〈ϕ2〉 . In this case we have

Hnr = − 1

2M∗
∇2+

√

2

3
f
a

mπ
k (σR) τ3 (3)

with

R (r) = (cos kx, cos ky, cos kz) . (4)

Thus the nucleon quasi-particle moves in the three-dimensional periodic potential

U (r) =

√

2

3
f
a

mπ
k (σR) τ3, (5)

which can be recast as the sum over reciprocal lattice vectors

U (r) =

√

2

3
f
a

mπ
kt3

∑

K

(σRK) exp (iKr) . (6)

Here t3 = ±1 for protons and neutrons respectively. The matrix element

RK =
1

V

∫

V
d3rR (r) exp (iKr) (7)

is given by the integral over the volume of the elementary cell
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V =
(

2π

k

)3

. (8)

One can easily find that there are only six non-zero reciprocal lattice vectors for which the

matrix element does not vanish, RK 6= 0. The direct calculation yields

RK =
1

2
nK, (9)

where the unit vector nK has the following components

nK = n−K = (1, 0, 0) if K = (±k, 0, 0)

nK = n−K = (1, 0, 0) if K = (±k, 0, 0) (10)

nK = n−K = (0, 0, 1) if K = (0, 0,±k)

Thus we can write

U (r) =Ukt3
∑

K

(σnK) exp (iKr) , (11)

where

Uk =
1

2

√

2

3
fa

k

mπ
(12)

By assuming that the periodic potential U (r) is small with respect to the nucleon energy,

near the Fermi surface, the nucleons can be considered as almost free quasi-particles of the

effective mass M∗. Then the crystal potential has the most effect on the nucleon states

for which the free particle energies εp and εp−K are almost equal for some reciprocal lattice

vector K, or, equivalentely, if the component of the quasi-particle momentum in the direction

of the reciprocal lattice vector is close to p‖ ≃ K/2. The latter condition means that, in the

above approximation, the summation over reciprocal lattice vectors can be restricted by the

values |K| < 2pF . Typically the pion condensation appears at k ≃ (1.4 ÷ 1.7)mπ, and the

condition (??) means the summation over all of the six reciprocal lattice vectors as given by

Eq. (10).

At p‖ ≃ K/2 one has εp ≃ εp−K. In this case, up to the leading terms, the equation of

motion of the nucleon has the form
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[

E +
1

2M
∇2+t3Uke

iKr (σnK)
]

ψ = 0, (13)

and the nucleon wave function can be written as a superposition of two plane waves

ψ (r, σ) = [A (p,σ) exp (ipr) +B (p,σ) exp (ipr−iKr)] , (14)

where the functions A (p,σ) and B (p,σ) obey the following set of equations

(E − εp)A (p,σ) +t3 (σ̂nK)UkB (p,σ) = 0, (15)

(E − εp−K)B (p,σ) + t3 (σ̂nK)UkA (p,σ) = 0, (16)

which has a non-trivial solution if

(E − εp−K) (E − εp)−U2
k = 0. (17)

As it follows from this dispersion equation, the energy eigenvalues, are devided into two

bands,

E±
p =

εp + εp−K

2
±
√

(

εp − εp−K

2

)2

+ U2
k , (18)

shown in Fig. 1, where the upper and the lower band are denoted as + and − respectively.

E 

p k/2

E +

E 
-

Fermi level

Fig. 1 Red solid line represents the nucleon spectrum as given by Eq, (10). Dashed line

corresponds to a free nucleon. The arrow shows a possible nucleon transition accompanied

by the neutrino-pair emission.

5



Near εp ≃ εp−K, the nucleon spin function can be taken as the eigenstate of σ̂nK:

(σ̂nK)χλ = λχλ, λ = ±1, (19)

Thus, from Eqs. (15), (16) we obtain the following normalized wave function for the upper

band

ψ+
p,λ (r, σ) = [up exp (ipr)−t3vp (σ̂nK) exp (ipr−iKr)]χλ (σ) , (20)

while for the lower band we have

ψ−
p,λ (r, σ) = [vp exp (ipr) +t3up (σ̂nK) exp (ipr−iKr)]χλ (σ) . (21)

The ”coherence factors” are given by

u2
p =

1

2

(

1 +
ξp
ζp

)

, v2
p =

1

2

(

1 − ξp
ζp

)

, upvp =
|Uk|
2ζp

, (22)

with

ξp =
εp − εp−K

2
, ζp =

√

ξ2
p + U2

k . (23)

In contrast to the ordinary plane waves, in the nucleon wave functions (20), (21), the nucleon

interaction with the condensed pion field is ”exactly” taken into account1. As it was expected

the spectrum of the corresponding nucleon states is of the band-like structure similar to that

for electrons in a cristalline metal. As given by Eq. (18), the energy gap in the nucleon

spectrum is ∆ = 2Uk. As will be shown in the next section, even in the case of a small

amplitude of the pion field, T ≪ a≪ mπ, the energy gap, Uk ≫ T , exponentially suppresses

the neutrino-pair bremsstrahlung from the nucleons, and the neutrino energy losses in this

process are much less than estimated before in [1].

1In our context we use term ”exactly” to stress that the energy spectrum (18) can be obtained

only by summation of the perturbation series to all orders.
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III. NEUTRINO ENERGY LOSSES

When, in the nucleon wave functions, the condensed pion field is ”exactly” taken into

account the neutrino-pair bremsstrahlung

n→ n+ ν + ν̄ (24)

can be described by the following diagram,

ν

ν

where the lepton pair is radiated by the nucleon undergoing a transition between its

eigen-states in the pion field. If the initial and final nucleon states are in the same band,

the radiation is kinematically forbidden. Indeed, in this case the four-momentum q = (q0,q)

transferred from the nucleon is space-like2, q0 < |q|, while the total momentum of the

lepton pair is a time-like, q0 > |q|. Consequently it is impossible simultaneously to conserve

the energy and momentum in the reaction. However, even for small momentum transfers,

there exists a finite energy difference between different bands, so the neutrino radiation is

kinematically allowed for the nucleon transitions shown by the arrow in Fig. 1.

We now examine the process in which the neutron quasi-particle (t3 = −1) makes a

transition from the upper band to the lower one. The neutrino interaction with the non-

relativistic neutrons is of the form3

Ĥ = − GF

2
√

2
(J0l0 − gA Jl) , (25)

2Since the group velocity of the nucleon is ∇pE < 1, the energy difference between nucleon states

q0 = |q| ∇pE is less than |q|.

3Since our goal is to prove the exponential suppression of the process, we omit the correction to

the weak vertex caused by NN correlations, which is known to suppress the neutrino energy losses

up to 100 times [1].
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where GF is the Fermi constant, and gA = 1.26. The vector current of the non-relativistic

neutron has only the time component, J0 ≡ Ψ̂†Ψ̂, while the axial-vector current is given by

its space components, J ≡ Ψ̂†σΨ̂. The neutral weak current of neutrinos is of the standard

form

lµ = Ψ̄νγµ (1 − γ5)Ψν , (26)

We consider the total energy which is emitted into neutrino pairs per unit volume and time.

By Fermi’s ”golden” rule we have

Q =
∑

ν

∫

d3pd3p′

(2π)6

∫

d3q1
2q0

1(2π)3

d3q2
2q0

2(2π)3
2πδ

(

E+
p − E−

p′ − q0
)

×q0
∑

K

∑

λ

|Mfi|2f
(

E+
p

) (

1 − f
(

E−
p′

))

,

The integration goes over the phase volume of neutrinos and antineutrinos of total energy

q0 = q0
1 + q0

2 and total momentum q = q1 + q2. The symbol
∑

ν indicates that summation

over the three neutrino types has to be performed. The square of the matrix element of the

reaction (24) summed over spins of initial and final particles has the following form

∑

λ

|Mfi|2 = G2
Fg

2
Au

2
pv

2
p (2π)3 δ (p− p′) δµiδνj (δij − δi3δj3)Tr lµlν (27)

Here we take into account that, in the degenerate case T ≪ µ, one can neglect a small

momentum of the neutrino par, |q| ∼ T≪|pF |, by making the following replacement

δ (p − p′ − q) ≃ δ (p− p′). The distribution function of initial nucleon as well as blocking

of its final states are taken into account by the Pauli blocking-factor f (E+) (1 − f (E−)),

where f is the Fermi distribution function

f (E) =
(

exp
(

E − µ

T

)

+ 1
)−1

. (28)

We assume that neutrinos can escape freely from the matter.

By inserting
∫

d4qδ(4) (q − q1 − q2) = 1 in this equation, and making use of the Lenard’s

integral
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∫

d3q1
2q0

1

d3q2
2q0

2

δ(4) (q − q1 − q2)Tr (lµl
∗
ν)

=
4π

3

(

qµqν − q2gµν

)

Θ
(

q2
µ

)

Θ
(

q0
)

, (29)

where Θ(x) is the Heaviside step function, we can write

Q =
∑

ν

∑

K

4π

3
G2

F g
2
A

∫

d4q Θ
(

q2
µ

)

Θ
(

q0
)

q0
∫

d3p

(2π)9
2πδ

(

E+
p − E−

p − q0
)

f
(

E+
p

) (

1 − f
(

E−
p

)) (

qµqν − q2
λgµν

)

u2
pv

2
pδµiδνj (δij − δi3δj3)

Then the direct calculation of the integrals gives

Q =
∑

ν

∑

K

1

60π5
G2

F g
2
AM

2U
2
k

K

∫ ∞

2UK

q6
0

√

q2
0 − 4U2

k

dq0

e
q0
T − 1

. (30)

Here the lower limit of integration corresponds to the minimal energy of the neutrino pair

radiated due to the nucleon transition from the upper to the lower band.

According to Eq. (10), there are only six non-zero reciprocal lattice vectors for which

the matrix element RK does not vanish. By performing summation over reciprocal lattice

vectors and taking into account three neutrino flavours,
∑

ν = 3, we obtain

Q =
3

10π5
G2

F g
2
AM

2U2
k

1

k

∫ ∞

2Uk

q5
0

√

q2
0 − 4U2

k

dq0

e
q0
T − 1

. (31)

The energy gap

∆ = 2Uk =

√

2

3
f
a

mπ
k (32)

between the nucleon energy bands rapidly increases along with increasing of the amplitude

of the condensed pion field. For a developed condensate one has 2Uk ≫ T. In this low-

temperature limit, typical for neutron stars, the neutrino energy losses are exponentially

suppressed. Indeed, in the case 2Uk/T ≫ 1, the main contribution to the integral, in Eq.

(31), comes from the vicinity of the lower limit where x ≃ 2Uk/T . Therefore, in the case of

developed pion condensate, we obtain the following estimate

Qlow−temp ≃ 24
√

2

5π5
G2

Fg
2
AM

2 1

k
TU7

ke
−4Uk/T . (33)
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In the limiting case of small amplitude of the pion field 2UK ≪ T , from Eq. (31) we

have

Q ≃ 2π

315
G2

Fg
2
AM

2f 2 a
2

m2
π

kT 6, (34)

which reproduces the result obtained in [1] by the perturbation theory. Notice that the

energy losses (34) are actually 3 times larger than that given in [1] due to summation over

3 neutrino flavours.

IV. CONCLUSION

To summarize, neutrino-pair bremsstrahlung from nucleons in the periodic field of the

π0 condensate is much less important than suggested by earlier estimates. The reason for

this is that, at the temperatures typical for cooling neutron stars, the process is suppressed

by band structure effects.
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